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Abstract 

We discuss the geometry of the Marsden-Ratiu (MR) reduction theorem for a bihamiltonian 
manifold. We consider the case of the manifolds associated with the Gel’fand-Dickey theory, i.e., 
loop algebras over ~1,~. We provide an explicit identification, tailored on the MR reduction, of the 
Adler-Gel’fand-Dickey brackets (AGD) with the Poisson brackets on the reduced bihamiltonian 
manifold AI< Such an identification relies on a suitable immersion of T*N into the algebra of 
pseudodifferential operators connected to geometrical features of the theory of (classical) W,,- 
algebras. 
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1. Introduction 

W-algebras are algebras with quadratic commutation relations admitting the Virasoro 
Lie Algebra as a subalgebra. They have been the object of extensive study in the last 
few years, after the identification of such a structure (due to Zamolodchikov [34]) as the 
extended symmetry algebras of relevant models of two-dimensional (Quantum) Conformal 
Field Theory. It was soon understood that a physically meaningful family of such algebras 
could be obtained as quantum deformations of the Adler-Gel’fand-Dickey (AGD) bracket 
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well known from the classical theory of soliton equations [3,13,18,2 1,271. Such a discovery 
prompted a remarkable amount of work aiming both at the classification of all possible 
W-algebras, and the study of their representations and geometrical aspects (see, for an 
updated review, [S]). A particularly fruitful approach proved to be the Drinfel’d-Sokolov 
(DS) reduction scheme for Kac-Moody Lie algebras [ 171, for the wide variety of examples 
it embodies and the appealing mathematics behind it (see, e.g., [6,19,20,23,25].) 

In this paper we want to discuss some of the geometrical aspects of the theory of (classical) 
W-algebras related to the Hamiltonian approach to infinite-dimensional integrable systems. 
We set our study in the framework of the Marsden-Ratiu (MR) reduction scheme [30] 
for Poisson manifolds, extended in [lo] to the case of bihamiltonian manifolds, whose 
application to the Gel’fand-Dickey hierarchies [24] can be found in 18, lo]. 

The MR and the DS reduction schemes can be compared as follows, in relation to the 
theory of “Hamiltonian systems with symmetry” (see, e.g., [l]). The basic datum of the 
DS scheme is a Poisson action of a group G on Poisson manifold M. The group defines a 
momentum map and a Hamiltonian reduction of the manifold M (the Mmwlen-Weinstein 
reduction). The reduction process considers a submanifold S, of M (a level surface of the 
momentum map), a foliation &G of SG (the orbits of the little group), and the reduced phase 
space N = SC/&G. On the other hand, in the geometric scheme of the bihamiltonian MR 
reduction the two steps are defined in terms of two compatible Poisson brackets on M. The 
submanifold S is a symplectic leaf of the first Poisson bracket, and a foliation I is generated 
on it by the restriction to 7’S of the image, via the second bracket, of the Casimir functions 
of the first one. The resulting quotient space N = S/E is a bihamiltonian manifold. 

The first point of this paper (Section 2) is to discuss in some detail the interplay of the 
manifolds M, S, and N together with their Poisson structures. We pay special attention 
to the Poisson brackets on I-fol-ms. This fits the results of [25] that identify classical l%,,, 
algebras as Poisson algebras of 1 -forms over CD manifolds of manic differential operators 
ofordern + 1. 

From Section 3 onwards, we specialize our constructions to the case of loop algebras 
f,(~t,) over the simple Lie algebra (1 = <I,, , which we equip with the compatible Poisson 
structures: 

Pu := the commutator with a fixed element A E L(G~,); 
PI := the modified Kirillov-Kostant one. 

(1.1) 

In Sections 4 and 5 we identify the reduced Poisson brackets with the well-known linear and 
quadratic AGD brackets on the algebra of pseudodifferential operators (see, e.g., [2,14]), 
and provide the concrete examples of the KdV and Boussinesq cases. 

It is worthwhile to remark that there are several ways to provide the phase space of the 
Gel’fand-Dickey theories a (bi)hamiltonian structure, and namely: 
( 1) the AGD procedure [ 14,291; 
(2) the DS reduction from the space of matrix-valued first-order differential operators; 
(3) the bihamiltonian reduction process on a loop algebra. 
The equivalence between (1) and (2) is one of the results of DS seminal paper [ 171, while the 
one between (3) and (2) has been proved in [32], using the fact that the Marsden-Weinstein 
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symmetry reduction can be seen as a particular case of the MR reduction. This paper 
provides a direct and constructive proof of the equivalence between the AGD brackets 
and those obtained by Hamiltonian reduction in the MR framework. Its main aim is the 
description of the geometrical properties of the MR reduction processes. Accordingly, we 
explicitly construct the embedding of T*N into the algebra of pseudodifferential operators 
which allows us to perform the identification between the MR-reduced Poisson brackets 
and the AGD ones. In particular, we make contact with the results of [33] (see also [ 151) 
about the factorization of the AGD quadratic Poisson tensor into a pair of Poisson algebra 
homomorphisms. We show indeed that the latter are a particular instance of the Poisson 
morphisms discussed in Section 2. Since each of those mappings corresponds to a precise 
step in the MR reduction process, our results may provide the theory of the W,,-algebras 
some further geometrical flavor. 

2. Marsden-Ratiu (MR) reduction 

In this section we will briefly describe the bihamiltonian reduction process developed 
in [lo], which is based on the MR reduction theorem [30]. Let us first recall the few notions 
of the general theory of Poisson and bihamiltonian manifolds which are needed for our 
purposes. 

A Poisson munifold is a manifold M endowed with a Poisson bracket (.. .), i.e., a bilinear 
skewsymmetric composition law of C O”-functions fulfilling the Leibniz rule and the Jacobi 
identity. The corresponding Poisson tensor P is the bivector field P on M, considered as 
a linear skewsymmetric map P : T*M + TM, defined by 

(2.1) 

Any Poisson bracket on functions induces a Poisson bracket on forms [16,28]. If (~1 and 
cy2 are arbitrary l-forms on a Poisson manifold M and P is the Poisson tensor, the bracket 
[al, cq)p is defined by its value on a vector field X by 

(((Yl> a2lf* w = LPa,b2. w - LPa,(aI. X) - @I. Lx(Pb2), (2.2) 

where L poll (~2, X) denotes the Lie derivative of the scalar function ((~2. X) along the vector 
field Pal, and Lx(P) is the Lie derivative of the Poisson tensor P along X. 

A hihamiltonian manifold is a manifold endowed with a pair of compatible Poisson 
brackets (., .}o and (., .) I Two Poisson brackets are compatible if the linear combinations 

(.f; Rlh := If> RII + h(f, gJ0 (2.3) 

verify the Jacobi identity for any value of the parameter h. This is tantamount to requiring 
that the cyclic compatibility condition 
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holds for any triple of functions (f, g, h) on M. In this case, the bracket 1.. .]h is called the 
Poisson pencil on M defined by {., .]e and { ., .) 1. 

In order to describe the bihamiltonian reduction process, let us recall that every Poisson 
manifold (_A4, P) is foliated in symplectic leaves. Indeed, the characteristic distribution 
C = (P d f 1 f‘ E C”‘(M)) is integrable, and the maximal integral leaves are symplectic 
manifolds [26]. On a bihamiltonian manifold the symplectic leaves of both Poisson tensors 
can be further foliated. Let us denote by C the characteristic distribution of the Poisson 
tensor PO. A second distribution D, defined by D = {PI df’] f is a Casimir function of PO), 
is naturally conjugated to C. The reduction theory of bihamiltonian manifolds is the study 
of the interplay between these two distributions. As a consequence of the compatibility 
condition (2.4) between the Poisson brackets, the distribution D is integrable [lo]. Let us 
choose a specific symplectic leaf S of { ., .]o, and let us denote by E the distribution induced 
on S by D; thus the leaves of E are the intersections of S with the leaves of D. We shall 
assume E sufficiently regular that there exists the quotient space N = S/E, and denote 
by is : S + M and x : S + n/ the canonical immersion of S in M and the canonical 
projection of S onto ni. Then [lo]: 

Proposition 2.1. The quotient space N = S/E zs a bihamiltonian mumfold. On N there 
exists c1 unique Poisson pencil {., .};;” such that 

(f, g}?’ o 17 = (F, G}h o is (2.5) 

for any pair of functions F and G which extend the,functions f and g of N into M, and 
are constant on D. Technically, this means that the~function F verifies the conditions 

Fois=fon, (2.6) 

IF, KII = 0 (2.7) 

for any junction K whose dtferential, at the points of S, belongs to the kernel of PO, 

Since in this paper we will deal with Poisson tensors rather than brackets, it is worthwhile 
to discuss the meaning of the previous proposition in terms of Poisson tensors. First of all 
we prove the following. 

Lemma 2.2. Lets E S and v E T,*M. Then v is in the annihilutor (DO), of D nt s ifand 
only if ( PA)> u is tangent to S. 

Proof ( PA).~ u is tangent to S if and only if (w, ( PA),~ v) = 0 for all w E Ker( PO), . But 
this is equivalent to the statement that (v, ( PI)~w) = 0 for all VJ E Ker(Po),?, i.e., that 
u E (D”).y. 0 

To construct the reduced Poisson pencil Pfr starting from the Poisson pencil PA on M 
we have to conform to the following scheme: 
(I) For any 1 -form o1 on N, and we consider the l-form rr*~ on S, which obviously belongs 

to the annihilator E” of E in T*S since E = Kern,. 



P. Cusuti et al./Journul of Geometry and Physics 26 (1998) 291-310 295 

(2) We construct a lifting of (;Y, that is, a l-form b on M which belongs to the annihilator 
D” of D and satisfies 

i;B = 7c*a. (2.8) 

Such a lifting /3 of (Y is not uniquely defined, but this arbitrariness is irrelevant. 
(3) We construct the vector field PAD associated with the l-form B through the Poisson 

pencil of M. Thanks to Lemma 2.2, we have that PAP is tangent to S. 
(4) Finally, we project this vector field from S to N. The projection of Pi/3 does not depend 

on the choice of the particular lifting b and defines unambiguously (Pi”)a. 
We notice that in the construction of the reduced pencil Pi” only the value of the 1 -form /I 
at the points of S plays a role. Moreover, even if S is tint a bihamiltonian manifold, to any 
lifting B of a l-form on JV, we can associate a whole pencil of vector fields Xh = P,(B) 
tangent to S. 

Let us denote by X(M) (resp. X*(M)) the space of vector fields (resp. l-forms) on M, 
by r(U) the space of sections of the bundle V + M, and by i;(V) its pull-back on S. In 
the space of sections of iz (T* M) we can define the subspace rs formed by all sections of 
ig(DO) whose restriction to X(S) are liftings of l-forms on N: 

r~ = (0 E r(i~(D"))lBlx(s) E Imn*l. (2.9) 

By definition of l-s, a surjective map JS : rs + X*(N) can be introduced by means of 

n*(Js(B)) = iZ(B). (2.10) 

Then the previous scheme about the definition of the reduced Poisson pencil can be sum- 
marized in the formula 

ptr o Js = jr* o PA. (2.11) 

Proposition 2.3. The space rs is closed with respect to the Poisson brackets on I -forms 
{., ., )p,. Moreover the map JS is n morphism between the Lie algebrus (rs, {., .)p,~) and 

(X*(N). l., Gy). 

ProojI First of all we remark that, since for all /I E l-s the vector field PAP is tangent to S, 
the right-hand side of the expression 

(WI> B2lP,* w = L&B, (82, X) - LPi&(BI. X) - ~Bl,LX(Ph)B2). (2.12) 

where PI, 82 E Ts, defines a section of iB(T*M). In order to prove that (fir, ,!?2]p, E rs 
we have first to check that, for all Y in D, 

(Wl, B2lP>,? Y) = 0. (2.13) 

Since D is generated by the Hamiltonian vector fields P1 df with Hamiltonians f which are 
Casimirs of PO, we can consider Y = P1 df with PO df = 0. Being fir, 82 E I-,, we have 
LP,~~(/~I, Y) = LP,~, (fi2, Y) = 0; hence we simply have to prove that (/?I, LY(PA)B~) 
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= 0. Actually this is a consequence of the following formula (equivalent to the compatibility 
condition (2.4)): 

LP, d,f(Po) + Lp,df.(J’~) = 0 Yf’ E C”(M). (2.14) 

We are thus left with showing that the Poisson bracket (PI, ,&)p, restricted to X(S) is in 
the image of r*. We will show both this property and that J,c is a morphism by proving that 

(MI, B21~,, X) = (IJs(BI), JshWpy n*(W) (2.15) 

holds true for any vector field X tangent to S and projectable onto N. From (2.12) and 
the identity (/31, Lx(P).)&)) = (Js(Bl), L,*(x)(P,t/)Js(~2)), which can be proved using 
properties of the Lie derivative and relation (2.1 l), we have: 

- (JS(Bl)> L*(X)u$JS(82)) 

= (~-Is(Bl)> &(82)lpf7 n*(X)). 

where we have denoted the Lie derivative along P;‘r(Js(/3i)) by a/at;. 

(2.16) 

0 

2.1. The trunsversal subman(fold 

In this section we recall the technique of the tmnsversal subman@d described in [ 1 I]. 
Besides allowing to simplify the calculation involved in the bihamiltonian reduction scheme, 
it will naturally give rise to another space of sections r~ which is closed with respect the 
Poisson bracket on l-forms, and to a Poisson morphism JQ: r~ + X*(N) which, under 
an additional assumption, becomes an isomorphism. 

In the notations of the previous section, a transversal submanifold to the distribution E 

is a submanifold g of S, which intersects every integral leaves of the distribution E in one 
and only one point. This condition implies the following relation on the tangent spaces: 

TQS=TQQ@E, VQEQ. (2.17) 

If such a transversal submanifold Q exists, then it is obviously diffeomorphic to the quotient 
manifold _ti, and inherits from N a bihamiltonian structure. The Poisson pencil on N can 
be computed by noticing [ 1 l] that given a 1 -form a E X*(N) there always exists a section 
B of iz(T*M) where ie : Q + M is the canonical immersion, such that 

PAP E X(Q), (2.18) 

(B, Y) = (a, 7&Y VY E X(Q)> (2.19) 

where n % is the projection from e to N, i.e., the restriction of n to &. Therefore in order 
to compute the action of the reduced Poisson pencil PAN on the l-form (II, one has simply 
to determine the expression of PAP. 



207 

The sections B satisfying (2.18) form a subset f~ of sections of ik(T*M), and a natural 
map 1~ : I-Q -+ X*(N) is defined. Moreover, if /I E ~CJ, then the value BQ of /I at Q 
belongs to (@)a for all Q E Q (again by Lemma 2.2). From (2.2) it can be seen that the 
bracket (fit, 82)~)~ of two elements of f~ is a well-defined element of r~. Indeed, to check 
this, it is enough to show that Ph(Bt, fi2}pi E X(Q). Since Q is a submanifold, this follows 
from the relation (see [ 161): 

h{Bl) rH214 = [9Bl1 hB21. (2.20) 

In the same way it can be proved that the map JQ owns the same properties of the map Js, 
i.e., -I, is a Lie algebra morphism from r~ to X*(N) and satisfies the relation 

J? 0 PA = PiLi 0 JQ. (2.21) 

Finally we observe that if the kernels of the Poisson tensors PO and Pt have trivial in- 
tersection on Q, then the map JQ becomes a Poisson isomorphism. It holds, indeed, the 
following 

Proposition 2.4. [f Ker (PO) fl Ker (PI ) = (0) on &, then for all a E X* (~5~) there exists a 
unique lifting B E r~ sati.@jitzg comlitions (2.18)-(2.19). Therefore JQ is an isomorphism 

Proo$ We have only to prove that JQ is injective. Let us therefore suppose that there 
exist Bt and & in r~ such that /&!?I) = JcJ(,$). Then, using Eq. (2.21), n,(Pi(/l~ - 
82)) = Pf”(J~(pl - 02)) = 0. Since P>.(jl~ - 82) E X(Q) and & is a transversal 
submanifold we have that PA(/~I -82) = OVh. This implies /5lt -/32 E Ker(Pn)nKer( PI) = 

10). 0 

3. Gel’fand-Dickey manifolds 

In this section we will specialize the MR reduction scheme to the class of bihamiltonian 
manifolds which correspond to the Gel’fand-Dickey theories and their associated W,,- 
algebras [ 17,18,20,25]. Let (1 be the simple Lie algebra ~l(n + 1) and M = 0) the space 
of Coo-maps from S’ into (1. We denote by x the coordinate on St, and by S a map from 
S’ into (1. An element in the tangent space TsM is denoted by 3. Identifying 3 with it* by 
means of the Killing form (., .), a covector is a map V from St into (1, whose value on the 
tangent vector 3 is given by 

(V, s) = 
s 

(V(x), s(x)) dx 

s ’ 

(3.1) 

The first Poisson bracket on M is defined by 

I.f, RIO = -(A> ld.f(s), G(S)]). (3.2) 
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where f and g are arbitrary functionals on M, df(S) and dg(S) are their differentials and 
A is the vector of minimal weight for the “usual” Cartan decomposition of $1, i.e., 

The second Poisson bracket is defined by 

1.L s11 = a(d.L dg) + (S, ]df’(S)> dg(S)l), 

where 

(3.3) 

(3.4) 

(3.5) 

is the nontrivial cocycle on M. The corresponding Poisson tensors are given by 

(Po)sV = [A, VI, (3.6) 

(Pl)SV = vr + rv, Sl. (3.7) 

where V, denotes the derivative of the loop V with respect to x. The Lie-Poisson pencil PA 
is 

(PdsV = V, + [V. S + hA1. (3.8) 

It is a standard result [26] that these brackets are compatible. 
The reduction process starts with the choice of a specific symplectic leaf S of the Poisson 
tensor (3.6). All leaves are affine hyperplanes modeled on the orthogonal space 05; (with 
respect to the pairing (3.1)) of ($5~ = {V E (6 s.t. [V, A] = 0}, and we choose the one 
passing through the sum B of the root vectors corresponding to the positive simple roots of 
0. Thus S E S is parametrized by 2n periodic functions (p,, , qa) as follows: 

The Gel’fand-Dickey theories are related to the particular choice of the pair (A, B) above 
made but it is possible to make different choices of such elements. In [9] were considered 
pairs corresponding to the “fractional” (or generalized) KdV hierarchies [4,6] and in [3 l] 
those leading to the classical AKNS system. 

The next step is the study of the foliation E. A basic feature of (generalized) GD theories 
is that, thanks to the form of the Kirillov-Kostant Poisson tensor (3.Q the integral leaves 
of E are orbits of a group action. From [7,1 I] we borrow: 
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Proposition 3.1. The following properties hold: 
(i) The distribution E is spanned by the vectorfields 

299 

Xv(S) = V, + [V, Sl (3.10) 

with V E (6AB = (V E ($3,~ 1 V, + [V, B] E (%i). 
(ii) The integral leaves of E are the orbits of the gauge action of G;AB = eXp((s$AB) on S 

dejined by 

S’ = GSG-’ + G,G-‘. (3.11) 

(iii) The points of S with coordinates pj = 0 form a submanifold Q of S transversal to the 
distribution E. The reduced bihamiltonian Gel Tfand-Dickey manifold N = S/E is 
therefore parametrized by n independentfunctions (~0, UI, . , u,,_l) on S, invariant 
under GAB. The restriction to Q of the projection n : S -+ N = S/E is simply given 

by the equations 

U,j =$7j (j =O, l,..., n- 1). (3.12) 

To compute the reduced Poisson pencil Pp according to the general scheme discussed 
in Section 2, we will use the technique of the transversal manifold outlined in Section 2.1. 
It is worthwhile to remark that the points Q of Q have the canonical Frobenius form 

(3.13) 

Proposition 3.2. On the whole symplectic leqf S one has that Ker( PO) f’ Ker( PI) = (0). 

ProojY The statement is proved recalling that the Lie algebra CJ admits the gradation 

61,,+1 = 6 Ok> (3.14) 

where (7k is the space of matrices M such that Mj = 0 for 1 - j # k. This induces a 
corresponding grading in the loop algebra (i). Let us now consider an element V E KerPo. 
Then its decomposition with respect to the gradation is 

n-l 
v=cvk 

k=-n 

(3.15) 

and each homogeneous component vk is in ch$A. Remark that any element of the symplectic 
leafs can be decomposed as S = T + B with T E $F=_,gk. Imposing that V E KerPt and 
considering the maximal degree elements, we get [B. Vn_l] = 0. Hence, Vn-l commutes 
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both with A and B. Then, since !IA n !JB = (0) (see [ 1 I]), we can conclude that \‘,l_t = 0. 
In the same way, a recursive argument proves that V = 0. 0 

In particular, the statement of this proposition holds at the points of Q. so that. recalling 
the discussion of Section 2.1, the morphism JQ is an isomorphism, whose inverse will be 
denoted by 4. 

The unique section V = 4 (u) in f~ lifting the 1 -form u in X*(./v) can be explicitly 
computed, using conditions (2.18) and (2.19). Let v = (~0. ~1. , I!,,_ 1) E X*(,di) 
be defined by (u, ic) = C:‘zCj l, I v;lii and let (V/);,I=(),.,,.,l be the entries of the matrix 
V = 4 (u); then (2.19) implies 

o/i = Uj> ,j = 0. , 12 - 1. (3.16) 

Substituting the explicit expression of the Poisson pencil (3.8) in (2.18) we get 

V, + W, Q +hAl E TQLL’. 

This condition implies the following relations on the entries of the matrix V: 

(3.17) 

(3.18) 

--vi+’ +q_, + wk. ,I.\ = 0. 

These formulas together with the zero trace condition ~~=,, Vi = 0 show that each of the 
elements n/f is obtained algebraically from the first n elements of the last column of V. 
With the elements of r~ at our disposal, the reduction of the Poisson pencil can be now 
completed quite easily. According to the general procedure we have to compute the vector 
field 

0 = K + Pd. Q + hA1. (3.19) 

where V = 4(u) E r~. By expanding Eq. (3.19) we obtain 

tie = (V$, + v;((ulJ + h) - c u,w; - hq, 
I=0 

n-l (3.20) 

lij =(Vy), +Vy_, +o/::Uj -CU[Vi -hVy. j = I....n - 1 
I=0 

(3.21) 



Eq. (3.20) give the explicit form of the reduced Poisson pencil. In order to obtain a more 
compact formula, to be used in the following section, we define 

r1+ I 
v0 =v;,+v::(Llo+h). 

llfl 
V, = n/;y, + V;‘, + 1qv::. I = l....,n, 

(3.22) 

where II,, := 0. Then the reduced Poisson pencil (3.20) can be written as 

,I- I 

li,; = v:‘” -c 1qq - A$ I =O....,rz - I. 

I=0 

(3.23) 

4. Adler-Gel’fand-Dickey (AGD) brackets 

In this section we perform the identification of the reduced brackets on N with the 
AGD brackets and discuss some Hamiltonianaspects of Gel’fand-Dickey theories and W,,- 
algebras. 

The usual setting for Gel’fand-Dickey theories can be briefly described as follows. One 
considers the space 9 D 0 of pseudodifferential operators on S’ (see. e.g., [2,12,14,29] for 
a broader account on the subject), i.e., the space of formal Laurent series of the form 

A$ u; c.x,q (4.1) 
i=-x 

It is an associative algebra under the product defined (on homogeneous elements Al = 
LEk, a,$ , A? = ~~a_:‘) as 

Its associated Lie algebra admits a filtration (indexed by the integers) via the subspaces 
p DO,, formed by those operators of order at most p, and a trace form (the Adler truce) 
given by 

tr(A) = $resi, A = {a_,(x). (4.3) 

It is customary to denote by A+ the strictly differential part of A and by A_ := A - A+. 

LetL,,+I be the space of order n + 1 manic differential operators on the circle, parametrized 
by the (n + I)-tuple of functions (~0. , u,). Its tangent space TC,,+t can be naturally 
identified with the space D,, of differential operators of order ~1, and (via the Adler trace) its 
cotangent space T*L,z+l with the quotient space 9 DO/9 DO_(,+z) of pseudodifferential 
operators modulo those of degree less than -(n + 1). It is a classical result that L,,+l is 
endowed with a compatible pair of Poisson tensor, which are defined by 

PO(L). x = LX, Ll,, PI (IL.). x = L(XL)+ - (LX)+L, (4.4) 
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and are usually called, respectively, the Gardner-Zakharov-Faddeev and the Adler-Gel’fand 
-Dickey brackets or collectively AGD brackets. It is also a well-known fact (see, e.g., [ 141) 
that these brackets restrict to the subspace u,, = 0, where L = a”+’ - CTzi L4j a j. 

The connection of our previous results with this picture is established simply by trans- 
lating into this language the two processes involved in the MR reduction: 
(1) the lifting of l-forms from X*(N) in r~; 
(2) the projection of the Hamiltonian vector fields from S to N. 
This can be done as follows. With any u E N, ti E X(N), v E X*(N), and a/ E r~ we 
associate the operators (L . i, c(v), I/I(V)) defined by 

II- I ,I- 1 

L := an+’ - C Ujaj, i := - Ctijai, 
,I j=O j=O 

II (4.5) 

C(v) := - c a+‘[c#l(v)]~, e(v) := - Cqaj. 
j=O j=O 

Notice that w,” are the elements of the first row of V and [$(v)]i are the elements of the 
last column of the image under C$ of v. For simplicity of notation, and to anticipate the 
content of the next subsection, we put X = c(v) and E = e(V). Since [@(v)]i = uj, for 
j =O,..., n- l,wehave 

s 
resa(Xi) dx = (v, ti), (4.6) 

S’ 

and so we are allowed to consider (L, X) as the representative of the l-form v in the space of 
pseudodifferential operators. Our task is to establish a link between E and X, corresponding 
to the relation between v and the matrix V constructed in the previous section, and a link 
between E and i, corresponding to the relation between the 1 -form V and the vector field 
ti given by formula (3.23). The key to solve this problem is given by: 

Lemma 4.1. Let the coejficients W/ be dejined, for ,j = 0, . . . , n + 1 and 1 = 0, . . . , n, by 
Eqs. (3.18) and (3.22). Then 

ajE = - $a’ + @EL-‘)+(L -h), j=O,....n+l. (4.7) 
I=0 

Proo$ We prove by induction that 

n 

ajE = - ~V/a’ + Rj(L -A), 

I=0 
(4.8) 

where Rj is a purely differential operator. It is true for j = 0 because of the definition of 
E. Moreover 

n 

aj+‘E = a@E) = - x(n//,a’ + w{al+l) + aRjcL _ hl 
l=O 
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where we put u, = 0 and Vf = 0 for 1 -C 0. Now we use the recursion relations (3.18) and 
the definition of Vy” to get 

aj+lE,_ nl:+‘a’ + h@, - WiL + aRj(L - h) 

I=0 

=-f w/+‘a’ + (aRj - Vi)(L - h), (4.10) 
I=0 

proving (4.8). Finally we notice that this equation implies that 

Rj = [(ajE)(L - A)-‘]+ = [(ajE)(L-’ + r;Lp2 + . .)I+ = (ajEL_‘)+ (4.11) 

for .j = 0, . , II + 1. 0 

We are now able to prove the main relations between the pseudodifferential operators 
associated with our geometrical objects. From now on we put a/ = C#I (v) and, consequently, 

E = $(4(u)). 

Proposition 4.2. 
(i) The operators E and X are related by E = (XL)+. This equution is the operatorform 

of the “lifting of covectors” entering the MR reduction. 
(ii) The operators E and dL/dti associated with the i-th reduced structure are related by 

dL 
- = LE - (LEL-‘)+L, 
dtl 
dL 

- = E - (LEL-I)+. 
dto 

(4.12) 

These equations are the operator form of the projection of the Hamiltonian vector 
fields from S onto N. 

(iii) The operator form of the reduced Poisson tensor on N is given by 

dL 
- = L(XL)+ - (LX)+L, 
dt) 

$ = (XL)+ - (LX)+ = [X, Ll+, 
(4.13) 

0 

i.e., the reduced brackets are the AGD brackets in the algebra of pseudodifferential 
operators. 



304 

Proc$ 

(9 

I? Cusuti et ~l./Journul of’ Geotnetr?, and Physics 26 (199X) 29/-3/O 

It is easily seen that the first claim is equivalent to the assertion that EL-’ = X -+- Z, 
with deg Z = -n - 2. The latter follows from Lemma 4. I, since 

(ii) 

res(ajEL-‘) = res - kt’/a’L-’ + (a-;X)+ - h(dX)+Lp’ , 
c 1 

(4.14) 
I=0 

and deg(&iX)+L-’ 5 -2 for j ( ~1. Therefore res(ajEL-‘) = -res~;iuV~$ 

L-’ = -res(VLa”L-‘) = -vi for j = 0, . . ..n. We conclude that EL-’ = 
-(a-‘a/jl+...+a-(“+‘)V::)+Z,withdegZ = -r~-2.Finally,~~~,(-~-j-‘W~) = 
X from (3.16). 
Let us set L = dL/dt’ - A. dlldtu; then L = - C;lzi liJ aj, where ii,; is the vector 
field associated with the Poisson pencil (3.23): 

Then 

II =ci II ~ I 

-v;+~ + C u,v; + hb~y aj, 
j=O l=O 1 

(4.15) 

(4.16) 

since Eqs. (3.21) and the definition (3.22) of n/i+’ imply that o/:i+’ - Cyzd u,V! - 
A.Vi = 0. Therefore we have 

= an+’ E - (an+’ EL_‘)+(L - A) 

+ CnI(-a’E + (a/EL-‘)+(L - h)) - hE 
l=O 

/ n-l \ r n-l 1 
n+lEL-‘)+ - &(a’EL-‘)+ L 

I=0 J 

n-l 
-A E + Cu,(a’EL-‘)+ - (a”+kL-‘I+ 

I=0 

= LE + RL - h(E - (LEL-‘)+). (4.17) 
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where R is a purely differential operator. Thus 
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dL 
-=LE+RL, 
dtl 
dL 

- = -E + (LEL-‘)+ 
dto 

and 

SL-t = LEL-’ + R ) 
dtt 

By this result, one easily gets 

dL 
- = L(XL)+ - (LX)+L, 
dtl 

(4.18) 

$ = (XL)+ - (LX)+ = IX, Ll+, 
0 

R = -(LEL-I)+. (4.19) 

(4.20) 

so that (iii) is also proved. 0 

4. I. On Rudul’s morphism 

We are now in a position to analyze from a geometrical point of view some results of [33] 
(furtherly generalized in [22]). They can be described as follows. 

Let E be the algebra of differential operators with coefficients in the space of differential 
polynomials in the Ui’s and E,?+t its quotient with respect to the equivalence relation 

E - F iff F = E + RL for some R E &. (4.21) 

Moreover, let WL be the map associating with every element E of E the differential 
operator 

Wt(E) := LE - (LEL-‘)+L = (LEL-‘)_L. 

Finally, define @L(E) := (EL-‘)_ and @L(X) := (XL)+. 

(4.22) 

Proposition 4.3. The following properties hold [33]: 

(i) 

(ii) 

WL takes vulues in T &+I, passes to the quotient &,+I = I/ -, and is an isomorphism 
of Lie algebrus, provided one defines on &nn+) the commutator 

[E,FIL:=[E,F]+WL(E).(F)-WL(F).(E)mod -. (4.23) 

Here WL(Y) (F) = (d/dt)l,=oF(L + EWL(Y)); 
the map WL factorizes as 

WL =P, .OL, (4.24) 

where PI is the Poisson tensor dejined in Ea. (4.4); 



306 P. Cusuti et al./Journal of Geometry and Physics 26 (1998) 291-310 

(iii) 0~ is a Lie algebrus isomorphism between (&+I, [., .]L) and (X*(&+1), (., .)p,), 
where (., .)p, is the Poisson bracket on l,forms induced by PI. 

Let us regard &+I as a fiber bundle over Cn+t , and the map $ of Eq. (4.5) as a map from ~CJ 
to r(&+t). We endow the space r~ with the Poisson bracket on l-forms corresponding 
to the Poisson tensor PI of Eq. (3.7), which can be shown to have the form 

{VI> v211 = $ - 2 - [VI, v21* (4.25) 

where a/ati is the directional derivative along the vector field PI Vi and [., .] is the matrix 
commutator. 

Proposition 4.4. The map $ is a Lie algebra homomorphism between (r~, (. , .) 1) and 

(&*+I, L.9 .lL). 

Proqfi Let W, BV E r~, and let us put E = @l(V) = - CT=0 Wyaj and F = I/I(W) = 

- cj”=O W,paj; then from formula (4.25) we have 

where a/at1 and a/at2 are the directional derivatives along the vector fields PI W and PIMY, 
respectively. It follows from Proposition 4.2 that PI V (resp. P1 W) is, in terms of pseudod- 
ifferential operators, WL (E) (resp. IV, (F)). Therefore we have 

aF aE --__= 
atI at2 WL(E)(F) - WL(F)(E). 

Therefore it remains to prove that 

- [E, Fl. 
l.j=O 

(4.27) 

(4.28) 

Using formula (4.8) with h = 0, we have 

[E, F] = EF - FE 

j=O j=O 

= 2 (vyw/ - niw,0nl!)al + RL, 
l,,j=O 

(4.29) 

where R is a differential operator. Hence (4.28) follows, and the proof is completed. 0 

The results of this section can be summarized in the following commutative diagram of 
Lie algebra morphism 
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cL+1. 
@L 

1.3 .lL) - (Jf*G+I)> 1.9 .b, 1 

+ T T t 
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(4.30) 

JQ 
tr,> I.> .iP,) - w*(N). I., .lp:‘). 

Notice that < is indeed a morphism since it allowed us to identify the AGD brackets 
and the reduced brackets in Proposition 4.2. Hence, the fact that 01, is a morphism of 
Lie algebras can be read as a consequence of the general properties of JQ discussed in 
Section 2.1. 

5. Examples 

This last section is devoted to exemplify the results of this paper in the cases of the KdV 
and Boussinesq hierarchies. 

The KdV hierarchy is the GD theory associated with the loop algebra L(al(2)) whose 
picture in the MR scheme has been given in [lo]. As we have seen in Section 2.1, to compute 
the reduced Poisson pencil and the maps < and I,!J it is enough to calculate the elements of 
the subspace r~, where the transversal manifold Q is parametrized by 

0 1 
Q= 

i 1 Ll 0 
(5.1) 

The lifting V in f~ of the 1 -form u of X* (N) is determined by conditions (3.16) and (3.18), 
and has the form 

1 
2 v.l? c -- V 

W= 

-;v,, + (u + h)V &Lx j . 
(5.2) 

The reduced Poisson pencil is given by formula (3.20): 

ti = -;vxxx + 2(U + h)v, + f&u. 

The Poisson brackets on l-forms is 

(5.3) 

au2 avl 
(Vl, U2lp.A’ = F - F - [VI> U21N. 

h I 2 
(5.4) 

where a/at; is the directional derivative along the vector field PhNvi, and 

[VI 1 u21.u = VI u2x - U2Ul.x. (5.5) 

The Lax operator L is defined by 

~=a~-~, (5.6) 

while the pseudodifferential operators X and E can be read off the matrix V and are 
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x = <(?I) = -a-‘u - a-*(&u,), (5.7) 
E = +(4(u)) = ;u\- - ua. (5.8) 

The relations E = (XL)+ and the commutativity of the diagram (4.30) are easily checked. 
The next example is the Boussinesq hierarchy, which is associated with the loop algebra 

over d1(3). Again we simply have to compute the elements of r~, where the transversal 
submanifold Q is given by 

0 I 0 
Q= 0 0 1 

( 1 
(5.9) 

110 141 0 

Given the l-form u = (~0, ut ) in x*(N), the matrix V = 4(u) is uniquely characterized 
by conditions (3.16) and (3.18) together with the obvious zero trace relation, to be 

W= 

where 

v; = -ulns.* + (uo - +I+ + h)uox + (4, - +l.Juo 
2 

- ?JJO\,;l~l + (uo + h)Ul + ~uO.y.Lx. 

w: = -~lun + &Jon-a.w - $ ox u ~l+(uo-ful,+h)uo+u,ul. 

The reduced Poisson pencil is 

In this case the operators L, X and E are 

L = a” -141a - LiO 

x = -a-‘uo - a-%l - a-“(u,, - fUOsx + ~UOUl) 

E = -($oxx - guoL4, - Ul*) - (Ul - uIk>a - v&. 
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